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Abstract. We investigate the possibility of a bosonic preheating in the simplest model of supersymmetric
Hybrid Inflation (F-term inflation), where the inflationary superpotential is of the O’Raifertaigh-Witten
type. The end of inflation is related to a spontaneous symmetry breaking, which in the context of left-right
symmetric models lowers the rank of the gauge group. Our results indicate that the possibility for bosonic
preheating in this model is limited.

1 Introduction

The recent success in detecting neutrino masses has caused
a renaissance of the idea of grand unification. In left-right-
symmetric models, such as SU(3)c × SU(2)L × SU(2)R ×
U(1)(B−L) or SO(10), massive Majorana neutrinos arise
naturally. As the difference of baryon- and lepton number
is a gauged symmetry in these models, there could exist
interesting mechanisms for the creation of the correspond-
ing asymmetries. On the other hand, supersymmetry not
only provides the right mass scale for the heavy neutrinos,
but also gives the possibility of a inflationary potential in
the GUT-Higgs-Sektor. Then it is possible to construct a
cosmological model based on a consistent supersymmet-
ric grand unified theory, which can be judged by both,
its cosmological and its particle theoretical features. In
this paper we will concentrate on an O’Raifertaigh-Witten
model, which by the autors of [1] was shown to be a re-
alisation of Linde’s Hybrid Inflation scenario [2]. The su-
perpotential can serve as a part of the Higgs sector of a
left-right-symmetric model with global or local supersym-
metry. The phase of inflation and the formation of den-
sity fluctuation in this model have been studied in [1,3].
Since a successful cosmological model needs a very effec-
tive mechanism for particle production after inflation, here
we investigate the possibility of a bosonic preheating in the
inflationary potential under consideration. As preheating
possibly allows for the creation of superheavy particles, it
is a very interesting scenario not only in the context of
lepto- and baryogenesis but also for the creation of dark
matter. Focusing on qualitative insights rather than quan-
titative accuracy, we tried to work with a minimum of nu-
merical expense. Our investigation was inspired by those
in [4,5], where preheating in the original version of Hybrid
Inflation was studied. Our numerical results, which orig-
inally were presented in the context of an investigation
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of inflationary supersymmetric SO(10)-models in [6], are
very similiar to those in a recent paper, based on a ver-
sion of a NMSSM [7]. We will see, that the fourier methods
used in their case as in ours have to be handled with care
since the non-linear regime is reached early.

2 Supersymmetric hybridinflation:
the basic scenario

A common way to achieve an inflationary scenario from a
supersymmetric theory, is to use the simplest
O’Raifertaigh-Witten model for spontaneous symmetry
breaking (SSB) [1]. It is given by the superpotential

W = X(κC̄C − µ2), (2.1)

where the couplings are protected by either a continouus
or a discrete R-symmetry, which could descend from a
string theory. The superfield C = (âC , ψ̂C) is a repre-
sentation of the Lie-algebra AG of the Lie-group G, and
C̄ = (âC̄ , ψ̂C̄) is the conjugate representation. Here the
â’s represent the scalar component while the ψ̂’s are the
spinors. The Superfield X = (âX , ψ̂X) is an AG-Singlet.
The mass-scale µ could be caused by a string compactifi-
cation. In the case, that G represents a gauge symmetry
we have the tree-level scalar potential

V (0) = |FC |2 + |FC̄ |2 + |FX |2 + 1
2

dim(G)∑
r=1

|Dr|2

= κ2|aXaC̄ |2 + κ2|aXaC |2 + |κaC̄aC − µ2|2

+
1
2

dim(G)∑
r=1

|Dr|2. (2.2)

Here ai represents the vacuum expectation value (vev) of
the quantum field âi. Then V (0) is minimized for arg aC̄ +
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arg aC = 0 and it is independent of arg aC̄ + arg aX and
arg aC + arg aX . Supersymmetry requires the D-terms to
vanish identically for each single generator of the group G.
If G represents a product group including an U(1)-factor,
this means that |aC | = |aC̄ |.

In the following we will be interested only in the di-
rection of the AG-multiplets aC and aC̄ , which aquire a
G breaking vev. Therefore they will be denoted by the
same names. Now, concentrating on the D = 0-direction
and using certain R-and gauge transformations [8] we can
bring the scalar components ai to the real axis. The cor-
responding canonically normalized scalarfields φ, σ and
couplings λ, g are given by [8]:

σ := 2aC = 2aC̄ (2.3)

φ :=
√
2aX (2.4)

λ :=
κ2

4
(2.5)

g :=
κ√
2

(2.6)

M :=
√

κµ, (2.7)

where typically g2 = 2λ. Using this conventions the scalar
effective potential in terms of the fields φ and σ reads

V (φ, σ) =
1
4λ

(
M2 − λσ2)2

+
1
2
g2φ2σ2 + V (1)(φ), (2.8)

which resembles very much Linde’s original model of Hy-
brid Inflation [2]. Here V (1)(φ, σ) represents the loop cor-
rections to the tree level potential, which vanish for the
supersymmetric case. For σ=0, φ > M/g =: φc the gauge
symmetry remains conserved while supersymmetry is bro-
ken in the sector of the gauge singlet X inducing loop-
corrections V (1)(φ, σ). Including 1-loop-corrections the ef-
fective potential in this regime is given by [1]

V (φ > φc) =
M4

4λ

(
1 +

λ

4π2

[
ln

2λφ2

M2

+
(
2λφ2

M2 − 1
)2

ln
(
1 − M2

2λφ2

)

+
(
2λφ2

M2 + 1
)2

ln
(
1 +

M2

2λφ2

)

+ ln
M2

Λ2

])
, (2.9)

where Λ is a renormalization scale. Since soft susy break-
ing terms lead to scalar masses of O(TeV), such terms are
neglegible compared to the GUT-scale mass parameter M .
For a large range of the parameters κ and µ the poten-
tial above satisfies the Slow Roll conditions for inflation.
Here inflation is caused by the “cosmological constant”
M4

4λ . The scalar gauge singlet is the only degree of free-
dom, which then has a nonvanishing vev φ. This vev very
soon is dominated by the zero momentum Fourier mode
and it forms a condensate. Referring to [9] it can be de-
scribed by a homogeneous classical scalar field. For this
reason we will call φ the inflaton and identify it with the

zero momentum mode. The slow roll regime of the sin-
glet is a typical aspect of the superpotential (2.1) and has
become popular as effect of “a sliding field” outside the
context of inflation [10].

The end of inflation is connected to the end of the
gauge symmetric phase: as soon as φ reaches the “crit-
ical point” φc the effective mass m2

σ = −M2 + g2φ2 of
the Higgs-field vanishes. The classical equations of mo-
tions alone cannot tell us something about the dynamics
of the spontaneous symmetry breaking, since the deriva-
tive V (φc, σ = 0),σ vanishes identically and the vev of σ̂
remains zero. But, following the argumentation of Garcia-
Bellido and Linde [4], as φ slides towards zero, quantum
fluctuations around this vev will get tachyonic masses
stimulating an exponential growth of modes, whose mo-
menta are smaller than the effective mass, k < |mσ|,
where k means the comoving momentum. The modes with
k > |mσ| will not grow at all. The result is a sponta-
neous breakdown of the gauge symmetry caused by the
inhomogenous distribution of the field σ̂ with 〈σ̂〉 = 0.
Inflation ends typically near to this point.

As pointed out in [4] the distribution of the Higgs field
would be homogeneous on scales l ∼ |mσ|−1 or even some-
what greater, if mσ was constant in time. However, we will
see soon that this mass is oscillatory. This changes the
range and the mechanism of amplification of the “tachy-
onic modes”. Due to this fact, the distribution σk(t) in
momentum space will be even more localized around the
zero momentum mode, such that the spatial distribution
look homogeneously even on a scale l which is somewhat
greater than |mσ|−1. Assuming the zero momentum mode
is dominating, this regime effectively may be described by
a classical homogenous scalar field σ(t), i.e. as the zero mo-
mentum mode of the Higgs field, which rolls down from
the critical point. We will call σ(t) the Higgs-condensate.

As pointed out in [3] local supersymmetry modifies the
whole scenario because of the non-renormalizable terms,
whose influence on the inflation depends on the value of
the coupling constant κ. But in most of these cases the end
of inflation is dominated by the renormalizable terms in
the potential. Thus, non-renormalizable couplings will not
contribute after the phase transition and will be ignored
in the following investigation.

3 Evolution of the background

After SSB both of the fields φ̂(t,x) and σ̂(t,x) form con-
densates, which essentially can be described by the two
homogeneous classical fields φ(t) and σ(t). Higgs or sin-
glet particles will be identified with quantum fluctuations
around these condensates. In this section we concentrate
on the evolution of the background and we neglect the
effect of the quantum fluctuations. For reasons of simpli-
fication we use a “M-rescaling” to natural variables:

t → y := Mt

x → ξ := Mx

k → K :=
k
M
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Fig. 3.1. Evolution of the background
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Fig. 3.2. Oscillations in the φ-σ-plane

φ → f :=
φg

M
=

φ

φc

σ → s :=
σ
√

λ

M
=

σ

σ0
. (3.1)

Here the comoving momenta K and the scale factor a(y)
are normalized in such a way that a(yc) = 1 is fullfilled,
where yc means the M-rescaled time at the phase transi-
tion.

Neglecting the sub-dominant loop corrections, which
certainly will appear, as long as the supersymmetric min-
imum is not reached, the equations of motion after the
phase transition read:

(
d2

dy2 + 3h(y)
d

dy
+ 2s2(y)

)
f(y) = 0 (3.2)

(
d2

dy2 + 3h(y)
d

dy
+

(−1 + f2(y) + s2(y)
))

s(y) = 0 (3.3)

where h is the M-rescaled Hubble Parameter, h :=
( d

dya)/a, with

h2(y) =
2π
3

M2

λM2
pl

[
ḟ2(y) + 2ṡ2(y)

+(1 − s2(y))2 + 2f2(y)s2(y)
]
. (3.4)

Important qualitative insights then are possible without
any detailed calculation: Both of the classical fields, f =
φ
φc

and s = σ
σ0
, effectively oscillate with the same fre-

quency, approximately given by ω =
√
2, around the su-

persymmetric minimum, φ = 0, σ = M/
√

λ. For energetic
reasons the phase difference amounts to π/2. Coming from
the critical point (φ = M/g, σ = 0), depending on the ini-
tial values the dynamics in the φ − σ-plane should tend
to be nearly one dimensional. Since in our case the ini-
tial time derivates of the fields should be very small slow
roll values the trajectory should be near to a straight line.
Another interesting point, obvious without any calcula-
tion, is that the dynamics of the post-inflationary system,
measured in its natural time and lengthscale M−1, only
depends on the scale of the phase transition, M/

√
λ. As

the M-rescaled classical fields f and s and their deriva-
tives, take maximal values of O(1) effectively, this scale
has influence on the damping but not on other aspects
of the background oscillations: the smaller the scale is,
the longer the system swings correponding to its natural
timescale M−1. Thus, qualitative results of one breaking
scale will also appear at another breaking scale.

This discussion is confirmed by our numerical integra-
tion of the system of equations, as shown in Figs. 3.1 and
3.2. The parameters used in this and all of the following
investigations are given by

λ = 0.625 × 10−3

g2 = 0.125 × 10−2

M = 0.350 × 1015 (3.5)
M√
λ

= 1.40 × 1016,

which corresponds to a SSB near to the SUSY-GUT scale
in a supersymmetric SO(10) model in [6]. The solutions
are essentially damped oscillations around the sypersym-
metric minimum, with the predicted phase. The dynamics
in the f -s-plane is practically one dimensonal and can be
restricted to the straight line for very small initial values of
the time derivatives of the fields. Anharmonic behaviour is
caused by the interaction of the classical fields and by the
fact, that the Higgs field has a negative mass contribution
from the tachyonic mass.

Our result for the supersymmetric case (g2 = 2λ) is
quite different to the case with g2 = λ , which was consid-
ered in [4], where the classical fields oscillate in a rather
chaotic way. But it essentially equals the result in [7].

Now we consider the comoving energy densities after
the phase transition:

R := ρa3, (3.6)
Rφ := ρφa3, (3.7)

Rσ := ρσa3 . (3.8)

Here approximately ρ = M4/4λ is the system’s total en-
ergy density at the phase transition. As the Universe passes
a phase of matter domination after inflation, such that
ρ ∼ a−3, the product ρa3 will be constant. This is what
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Fig. 3.3. Energy densities of the background

our numerical investigations show in Fig. 3.3. After the
phase transition R is growing for a short time, up to the
value of 1.24M4/4λ and then remains practically constant.
It takes the background about 120 oscillations until it
swings in such a ,,harmonic” way, that the universe be-
haves matter dominated. Since we were interested in the
effective distribution of energy between both of the swing-
ing classical fields, in the calculation of Rφ and Rσ we
integrated out the short time dynamics (t ∼ O(M−1)) by
averaging over the the background oscillations. Here we
respected the fact, that the frequency of the oscillations is
slightly varying with time. The plot shows, how energy is
exchanged between the classical fields - one reason for an-
harmonic behaviour in Fig. 3.1. After about 2000 oscilla-
tions the energy distribution between the oscillation of the
inflaton and Higgs-condensate is approximately 1/3 : 2/3.
Then the classical fields essentially are decoupled oscilla-
tors.

4 Parametric excitation
of quantum fluctuations

Our investigation of the quantum fluctuations uses the
M-rescaling introduced in Sect. 3. We studied the mode
equations following from the Heisenberg expansion of a
quantum field χ̂, which stands for the M-rescaled quantum
fluctuations δŝ(y, ξ) and δf̂(y, ξ) around the classical fields
s(y) and f(y):

χ̂(y,x) =
1

(2π)3a3/2(y)

∫
d3K(b̂KXK(y)e−iξK

+b̂+
KX∗

K(y)eiξK),
(4.1)

where K is the M-rescaled commoving momentum. The
operators b̂

(+)
K satisfy the commutation relation:[

b̂K , b̂+
K′

]
= (2π)3 δ(K − K′). (4.2)

Then the occupation number is given by

nK =
ωK

2

( |ẊK |2
ω2

K

+ |XK |2
)

− 1
2
, (4.3)

and the particle density reads:

nχ(y) =
∫

d3K

(2πa)3
nK . (4.4)

Neglecting higher order terms in the quantum fluctua-
tions, the mode equations read:
(

d2

dy2 +
(

K2

a2 + 2s2 − 3
2

äa + ȧ2/2
a2

))
δfK(y) = 0 (4.5)

(
d2

dy2 +
(

K2

a2 + 3s2 + f2 − 1

−3
2

äa + ȧ2/2
a2

))
δsK(y) = 0, (4.6)

As numerical calculations show, very soon (3/2)(äa+ȧ2/2)
/(a2) ∼ 0 is fullfilled within the numerical accuracy and
this term can be neglected. This corresponds to a matter
dominated universe, where typically äa = −ȧ2/2 . We per-
formed a numerical integration of the full set of differential
equations. The values of K, for which these investigations
were done, were selected by a pre-investigation using the
well known approximation by the Mathieu equation [11].

Before turning over to our numerical results, it is sen-
sible first to recall the limitations of our ansatz. Clearly,
it breaks down, when the system enters the non-linear
regime. This latter stage can be investigate in the following
way. As clearly pointed out in [12] the exponential growth
of quantum fluctuation during preheating causes the sys-
tem to be essentially semi-classical. Quantum fluctuations
then behave essentially like random classical fields and can
be treated e.g. on a lattice.

However, in the beginning the evolution of the system
typically is in a linear regime, such that one can try to
work with fourier methods.

As in the last section, we performed numerical calcula-
tions of the full system of differential equations mentioned
above. We did not find any parametric amplification of the
Higgs-fluctuations with K >∼ 1/3. For K <∼ 1/3 there ex-
ists an amplification which can be described as a mixing
of both effects: mainly parametric resonance and partly
tachyonic mass. In the well known picture of the Mathieu
equation,

(
d2

dz2 + Ak − 2q cos(2z)
)

XK = 0, (4.7)

which is applicable restricting only to some few oscilla-
tions, this resonance starts inside the first resonance band
(1− q <∼ Ak <∼ 1+ q) with a resonance parameter q ∼ 0.9,
which corresponds to a strong narrow resonance regime.
The amplification of these modes is essentially indepen-
dent of the momentum and is given by the solution for
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Fig. 4.2. resonance of the mode with k = M/10

K = 0. Their amplitude is not supressed compared to
the zero mode and therefore the non-linear regime will be
reached for each of these modes when σ ∼ σ0. For that
reason our result only can tell us something about the re-
gion in momentum space, where particle production could
occur, but not if it really does and how strong it is.

In the case of inflaton fluctuations the tachyonic mass
is missing and the effect of the resonance is much weaker.
There is no amplification of modes with K >∼ 1/10 and
similiar to the above case and we observed a weak para-
metric amplification for modes with K <∼ 1/10. But since
the linearization of the equations of motion breaks down
early, we also should not trust this result too much.

In order to learn more about the space/momentum
dependence of the fields one could calculate the full (i.e.
non simplified) mode equation for the fourier modes. Since
the original equations of motions are non-linear, the mode
equations then will be rather complicated integro-
differential equations [13], that do not seem to be par-
ticuarly helpful for a numerical solution of the problem.

Our results show that after the SSB the inflaton and
the Higgs condensate probably decay into Higgs and sin-
glet particles, whose momenta are smaller than their mass.

Until now our investigations did not consider the ef-
fect of backreaction of the quantum fluctuations on the
classical fields, which is very important in the case of a
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Fig. 5.1. parametric excitation of the k = M -mode of a scalar
field χ̂

preheating with a very efficient particle production. As
pointed out in [11], the main effect of the backreaction
is to lower the resonance parameters in the picture of the
Mathieu equation. This means, that appearing resonances
will become weaker and will last for a shorter time.

In our case soon the fluctuations become large and
should terminate the resonance early. One could investi-
gate this effect using the Hartree approximation, but a
definite way to clarify this point are lattice calculations
[12,13].

5 Parametric production of external fields

Now we try to estimate, if an external scalar quantum
field χ̂, could be produced, coupling to the Higgs sector
via

1
2
h2

1φ
2χ̂2 +

1
2
h2

2σ
2χ̂2. (5.8)

Then the equations of motions will be modified in an ob-
vious way. The mode equation for the modes XK(t) reads(

d2

dy2 +
(

K2

a2(t)
+

h2
1

g2 f2 +
h2

2

λ
s2

))
XK(y, ξ) = 0, (5.9)

where again äa = −ȧ2/2 was assumed.
We used the same methods as before in our numerical

investigation. We think, that they are able to tell us some-
thing about the possibility of particle production (even if
we do not trust them quantitatively).

Our result is very similiar to the result in [4] for g2 = λ.
We found a strong resonance only for the case without
coupling to the Higgs-condensate, h2 
 0 (see Fig. 5.1).
But this situation is impossible, if we use the superpoten-
tial (2.1). The F -terms always lead to a coupling of χ to
the higgs field, even if in the superpotential it only cou-
ples to the singlet. Thus, it seems to be very difficult, if
not impossible, to construct a realistic coupling allowed
by supersymmetry and leading to a bosonic preheating.
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6 Consequences
for left-right symmetric models

In left-right-symmetric models the phase transition that
leads to the gauge symmetry of the Standard Model, nec-
essarily lowers the rank of the Lie group. The only renor-
malizable superpotential with this feature has the struc-
ture

W = XC̄C + polynomial in X, (6.1)

where X is a gauge singlet and C̄, C are appropriate spinor
representations of the left-right-symmetric gauge group.
It is an interesting question, if, using the superpoten-
tial (2.1), there could be a natural embedding of inflation
into the context of a right-left-symmetric model such as
SO(10) [6] or SU(3)c × SU(2)L × SU(2)R × U(1)(B−L),
which leads to a senseful cosmological model.

In minimal SO(10)-models [14,15] for example C
should be a 16-dimensional spinor representation, the
scalar component of which aquires a GUT-scale vev in
the SU(5)-singlet direction during the phase transition.
Since the SO(10) (more precisely: Spin(10)) is a sim-
ple and simply connected Lie group, breaking it down
to the SM-gauge group will lead to unwanted monopoles.
They appear in a first phase transition, when a 45 dimen-
sional Higgs representation aquires a suitable vev to break
Spin(10) down to the left-right-symmetric group GLR :=
SU(3)c×SU(2)L×SU(2)R×U(1)(B−L). The inflaton then
dilutes the unwanted remnants and ends in a phase tran-
sition which breakes the remaining gauge symmetry tothe
standard model group. This picture remains the same in a
pure GLR-Model, C being a SU(2)R × U(1)(B−L)-Higgs-
doublet. Our investigations indicate, that fourier methods
are not applicable to such models, if one wants to do a
quantitative investigation of the particle production after
inflation. The reason is, that unlike to the case of chaotic
inflation here the non-linear regime is reached early. But
there are still some information we can extract by those
methods. One is, that the creation of Higgs and singlet
particles will be possible only within a “low momentum
zone” with k � M . Probably then the decay of the two
condensates will be incomplete during the linear stage.
The other is, that other bosonic degrees of freedom can-
not be created efficiently because of the structure of the
supersymmetric lagrangian. We think the only approach,
which will enable us to get quantitative result will be lat-
tice calculations [12]. After having resolved this the next
step would be to study the possibility of fermionic pre-
heating for this superpotential, which recently was shown
to be possibly very efficient [16]. Since we deal with a
supersymmetric theory, there is no reason for neglecting
the fermionic superpartners. Also a parametric creation of
Majorana neutrinos could appear, which should be very
interesting in the context of leptogenesis. In this context
it also would be nessecary to rule out the creation of the
helicity-1/2-gravitinos by non-perturbative effects, which
recently was shown to be of possible danger for cosmo-
logical models which involve supersymmetry [17]. Particle
production in left-right-symmetric models could also be
caused by perturbative effects. Following [18] then still

the production of super heavy matter could be possible.
But, as we work with two condensates, both of them would
have to decay very efficiently, in order to be not in con-
flict with standard cosmology. Considering the gravitino
constraint on the reheating temperature of the Universe,
this would mean strong limitations to possible couplings
to other fields. Concluding, there is still some work to do,
until the particle creation after inflation in this very simple
supersymmetric model will be fully investigated.
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